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SUMMARY 

The pressure is a somewhat mysterious quantity in incompressible flows. It is not a thermodynamic variable 
as there is no ‘equation of state’ for an incompressible fluid. It is in one sense a mathematical artefact-a 
Lagrange multiplier that constrains the velocity field to remain divergence-free; i.e., incompressible-yet its 
gradient is a relevant physical quantity: a force per unit volume. It propagates at infinite speed in order to keep 
the flow always and everywhere incompressible; i.e., it is always in equilibrium with a time-varying divergence- 
free velocity field. It is also often difficult and/or expensive to compute. While the pressure is perfectly well- 
defined (at least up to an arbitrary additive constant) by the governing equations describing the conservation 
of mass and momentum, it is (ironically) less so when more directly expressed in terms of a Poisson equation 
that is both derivable from the original conservation equations and used (or misused) to replace the mass 
conservation equation. This is because in this latter form it is also necessary to address directly the subject of 
pressure boundary conditions, whose proper specification is crucial (in many ways) and forms the basis of this 
work. Herein we show that the same principles of mass and momentum conservation, combined with a 
continuity argument, lead to the correct boundary conditions for the pressure Poisson equation: viz., a 
Neumann condition that is derived simply by applying the normal component of the momentum equation at 
the boundary. It usually follows, but is not so crucial, that the tangential momentum equation is also satisfied 
at the boundary. 
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INTRODUCTION 

In some of the recent literature dealing with the numerical (approximate) solution of the 
incompressible Navier-Stokes (NS) equations, the issue of boundary conditions (BCs) for the 
associated (and derived) Poisson equation for the pressure is addressed in ways that to us appear to 
be, to say the least, unclear. While the majority of researchers seem to be content with what we shall 
attempt to demonstrate is the proper BC, there are some who are, in one sense or another, not quite 
satisfied with this approach; these ostensibly minority opinions are addressed in this paper. Hence, 
to those many (if not most) readers who already know what we are about to say, we apologize; but 
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to those who don’t, we believe the effort is worthwhile (it has been for us) and perhaps even 
important. 

In the references to be cited (merely a selective sample of relevant recent works, to be sure) and in 
this work, attention is restricted to the case wherein Dirichlet BCs apply to the velocities; this 
includes, for example, the common case of rigid (impenetrable) no-slip boundaries at which the 
velocity vector is prescribed (specified). It is important to point out at the onset that the NS 
equations require no a priori BCs on the pressure; velocity (or traction, not discussed herein) BCs 
applied to the momentum equations are sufficient to allow the determination of both velocity and 
pressure. 

We begin by discussing the review paper by Orszag and Israeli,’ who seem to confound the issues 
of the Weyl (additive) decomposition of a given vector (into a solenoidal part and an irrotational 
part) and solid wall BCs for viscous flow; while in the former case it is sufficient to specify either the 
normal or the tangential component(s) of the solenoidal part in order that both components be 
uniquely determined, the NS equations require that all components of the velocity vector be 
prescribed on the boundary. They go on to conclude that either the normal or the tangential 
component(s) of the (vector) momentum (NS) equation is permissible as a BC for the pressure 
Poisson equation and then seem to imply that this is a serious dilemma. (The former leads directly 
to a Neumann BC and the latter leads indirectly to a Dirichlet BC.) They then express the (valid) 
concern that a finite difference solution to the discrete pressure Poisson equation with the 
Neumann BC could be different than that using the Dirichlet BC. They conclude this discussion by 
mentioning (almost in passing) the following key point, upon which we shall elaborate owing to its 
vital importance: ‘An alternative, physically well-motivated procedure is to derive boundary 
conditions on the pressure by directly enforcing incompressibility on the fluid in the grid cells 
adjacent to the walls’. This, as they state, is ‘particularly natural in staggered-mesh schemes.. .’; it is 
also, and this is somewhat important, the procedure that is built in to a Galerkin finite element 
method (GFEM) approximation to the primitive variables form of the NS equations, for both 
staggered and non-staggered meshes. We believe and assert that this procedure is also 
mathematically ‘well-motivated’. Finally, the very important point, not mentioned by Orszag and 
Israeli and to be demonstrated in this paper, is the fact that the above procedure leads directly to 
the Neumann BC for the pressure Poisson equation; i.e., it is the BC ‘selected’ by a well-motivated 
procedure and hence (although not solely for this reason) is the BC of choice. This BC ‘ambiquity’ 
was largely resolved in a later publication, however.’ We present further resolution herein. 

Moin and Kim3 picked up on the ‘problem’ of Neumann versus Dirichlet BCs and made the 
following true but vague statement: ‘In general, however, the Neumann and Dirichlet problems for 
pressure may not have the same solution’. A more relevant and particular statement, which we shall 
attempt to prove in this paper, is: ‘The Neumann and Dirichlet problems for the pressure, if 
properly derived from a well-posed NS problem, will have the same solution, at least for t > 0’. 

In fact, Dierieck4 has already shown, for the restricted but important case of steady 2D Stokes 
flow, that the pressure does indeed satisfy both the Neumann and Dirichlet BCs. 

The paper by Donea et al.’ is interesting in that they first derive (via the GFEM) and explicitly 
present the discrete pressure equations, both at  an interior ‘cell’ and at the boundary, and then 
proceed to reject the latter equation as being ‘incorrect’ because it does not look like a discrete 
approximation to the Laplacian. What it does look like, and this was pointed out by Gresho6 but 
apparently not appreciated or not believed by Donea et al., is a Neumann BC for the (built-in) 
pressure Poisson equation; i.e., the normal component of the NS equation on the boundary. 

In a well-titled paper, ‘On the divergence-free condition in computational fluid dynamics: how 
important is it?, Gustafson and Halasi’ present what we believe is the right philosophy, but then 
seem to go astray. They state that the BCs for the pressure Poisson equation are obtained by 
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applying the momentum equation (normal component) and the continuity equation at the walls, 
but they then present the wrong equation for said BC. In a more recent and extended version of 
this work, however,8 the BC descriptions are corrected-and, according to Gustafson (personal 
communication), were correct, although wrongly stated, in the first reference. Herein we shall show 
that the answer to the above question is: ‘The divergence-free condition is of the utmost 
importance, in both theoretical and computational fluid dynamics’. 

The paper by Deville et d9 focuses (in part) on the desirability of the initial velocity field 
satisfying certain ‘compatibility conditions’ so that the evolving pressure solution will satisfy both 
Dirichlet and Neumann BCs, initially and for all t > 0. However, as pointed out by Heywood and 
Rannacher,” who refer to it as an overdetermined Neumann problem, and Temam,’ these 
compatibility conditions are generally not satisfied and one must accept and contend with this fact. 
(These compatibility conditions are also exceptional in that the incompressibility constraint causes 
them to be global rather than confined to the boundary as, for example, in the case of the Dirichlet 
or Neumann problem for the transient heat equation.) We agree with the latter philosophy and 
take the position that compatibility conditions on the data are not generally satisfied (i.e., they are 
usually ‘too difficult’ to satisfy) and thus, while an otherwise well-posed problem will satisfy both 
BCs for t > 0, we permit less regularity and even singularities as t +O. Heywood and Rannacher 
also show that only the Neumann BC is proper and applicable at  t = 0. 

A recent paper by Morino12 addresses the issue of compatibility conditions in a rather different, 
but interesting and probably quite useful, way. His conclusions, if slightly ‘reinterpreted’, agree 
with those expressed by Heywood and by us. In what is called the ‘key issue of this work‘, ‘the core 
of the present work’, Morino clearly recognizes the loss of ‘regularity’ as t +O, but he states it 
differently: after properly diagnosing that the tangential momentum equation is generally waived 
at a solid boundary at t=O in favour of the normal momentum equation, he interprets this 
behaviour as a loss of the no-slip BC. While the end result is the same (the equations and their 
solution are indifferent to the manner of interpretation), we prefer to ‘retain’ the no-slip BC but 
permit discontinuities in, for example, the tangential acceleration (at the wall at  t = 0). 

Last, in what is probably the most controversial of the references that we have seen, S t r i k ~ e r d a ‘ ~  
actually claims that the Neumann BC is ‘not satisfactory’ and that it leaves the system 
‘underdetermined’. He then uses this as one of his reasons for not solving the pressure Poisson 
equation-he solves instead the discretized momentum and continuity equations. (There are some 
good reasons for following this route and we shall state them in due course; but Strikwerda’s is not 
one of them.) It is possible that he was misled by his apparent belief that the normal component of 
the momentum equation on the boundary has already been employed so that its repeated use in the 
pressure equation (as a BC) is necessarily redundant. The fact is that the momentum equations per 
se are not employed on boundaries for which Dirichlet BCs on the velocity are invoked; they are 
thus indeed ‘available’, and properly so, as BCs for the pressure Poisson equation. See also 
Roache14 for further discussion of these issues. 

In this paper we attempt to eliminate the confusion using a three-pronged approach: (1) via the 
continuum partial differential equations (PDEs), (2) via the analysis of several consistent 
discretized approximations to the PDEs and (3) by numerical examples using one of the above 
approximations. By this route, we plan to demonstrate the following: 

(i) To solve the continuum Poisson equation for the pressure, only the Neumann BC is always 
appropriate; i.e., it provides a unique solution for t 2 0. The Dirichlet BC is generally only 
appropriate-for t > 0; it often does not apply at  t = 0. The unique solution obtained using 
either BC will, for t > 0, satisfy the other BC provided the Neumann BC is applied at t = 0. 

(ii) Any consistent discrete approximation of the original (primitive) equations contains, as an 
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automatic and built-in BC for the (implied) discrete pressure Poisson equation, the 
Neumann BC; for t 2 0. It does not obviously satisfy the Dirichlet BC. 

(iii) The converged numerical solution from (ii) will, however, also satisfy the Dirichlet BC 
owing to (i); but in general only for t > 0. 

Finally we will discuss another and different approach to a Dirichlet BC-one that is essentially 
equivalent to the Neumann BC but is not obtained by applying the tangential momentum 
equation at the boundary. Rather, it is (or can be) obtained by asking: ‘What boundary pressure 
corresponds to the normal derivative of pressure associated with the Neumann BC?. It turns out 
that the answer necessarily involves Green’s functions and, in the discrete case, leads to terms like 
influence matrix, capacitance matrix. 

Although the time-dependent equations are employed throughout, the primary results and 
conclusions apply equally well to the steady-state equations-subject only to the reasonable and 
important proviso that every steady solution attained is  considered to be the t + co limit of a 
transient solution. 

ANALYSIS OF THE CONTINUUM EQUATIONS 

The continuum PDEs  of interest are the time-dependent incompressible Navier-Stokes 
equations for u(x, t )  and P(x, t )  (velocity and kinematic pressure i.e., pressure divided by density), 

(au/at) + U - v U  + VP = vU, (la) 

(Ib) v * u  = 0,  

for t > 0 in a bounded domain R subjected to Dirichlet BCs 

u = w ( x , ~ )  on r = a R ,  
with 

l r n . w = 0 ,  

where w(x, t )  is a given function on r, and prescribed initial conditions 

with 

and 

u(x,O)=uo(x) in k n g r ,  

V.uo=O in R 

u, .n=w(x,O)*n on r .  
The kinematic viscosity v is a constant and 2 0. A useful and important alternative interpretation 
of (1) that will recur in this paper is: Given an appropriate solenoidal velocity field, (1) can be 
used to determine the concomitant pressure field, which pressure ensures that the acceleration 
is also solenoidal. This is perhaps easier seen by taking the time derivative of (lb) and rewriting 
(1) as a + VP=f(u) ,  V - a  =0, where a = &/at and f(u)= vV2u-u-Vu; given u such that 
V - u  = 0, these equations can yield a and P. Of course (2) and (3) must also be invoked to complete 
the problem specification. 

Remarks 

(i) A common and important special case of (2) is ‘simple contained flow’, for which n - w  = 0 
on r. 
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(ii) There are no (a priori) BCs on the pressure. Yet the solution of (1)-(3) will yield P, albeit only 
up to an arbitrary additive constant (the hydrostatic pressure level). 

(iii) The boundary condition solvability constraint, (2b), is of course a statement of global mass 
conservation and is derived by integrating (lb) over R and using the divergence theorem 
and (2a). 

(iv) Constraints (3b) and (3c) are required in order for the problem to be well-posed (see, e.g., 
TenamI5); and the former causes (lb) to apply f o r d  t 3 0. uo(x) is not required to satisfy the 
tangential component(s) of BC (2a); but if it does, the resulting solution may be smoother. 
Furthermore, by applying the divergence theorem to a small subdomain attached to r 
(a Gaussian pillbox) and letting its thickness approach zero, it follows that the normal 
component of (2a) is actually the manifestation of (lb) on r; i.e., an alternate and useful 
statement of V . u = O  on r is, for the only case of interest wherein n - u  is a continuous 
function of x as x + r where the boundary unit normal vector is imagined to be translated 
(in the - n direction) into R to form n - u  near r, n - u  = n - w  on r. So we see, from (2a) and (3c), 
that (lb) applies ‘everywhere and all the time’: V - u  = 0 in fi for t 3 0. [Note that in this 
interpretation, a problem such as a square cavity containing a fluid initially at rest and 
shear-driven by a ‘rubber sheet’ at y = 1 (e.g., w - z  = 1 - 1x1 for - 1 d x d 1) is 
well-posed even though V-u, when interpreted strictly as (&/ax) + (dv/dy) on r, is 
non-zero (it is f 1) on a portion of r at t = 0; i.e., n*u = n-w = 0 on r and V - u  = 0 in R 
for t 3 0.1 

(v) These are referred to as the primitive form or primitive variables form of the NS equations. 
(vi) In a common dimensionless form of the equations, the kinematic viscosity v is replaced by 

(vii) The addition of a non-conservative ‘body force’ to the right side of (la), such as the 

Having stated a well-posed problem in the primitive variables, we now turn to the major 
focus of this work: the derived equation for the pressure and its associated BCs. Assuming 
‘appropriate’ differentiability, the pressure Poisson equation is obtained by first applying the 
divergence operator to (la) to give 

1/Re, where Re is the Reynolds number. 

buoyancy term in the Boussinesq equations, causes no additional difficulties. 

V-((du/&) + u-VU) + V2P = VV.(V2U). 

Assuming next that div and a/at can be commuted, and using the identity 

v 2 u  = V(V.U) - v x v x u 

V.(U-VU) + v2p = (V v2@ - do/&) in R ,  

and the fact that div curl of any (differentiable) vector field is identically zero, we obtain 

where 0 = V*u is the velocity divergence. But according to Remark (iv) above, we have 

V - U = O  in fi for t a O ,  ( W  

V 2 P =  -V-(u-Vu)  in R for t 3 0 .  (44  

which leads to the pressure Poisson equation (PPE) 

Having easily arrived at the statement of the conventional PPE, we next pose the logical, 
important and seemingly innocuous question: ‘Can we go backwards?; i.e., given that (la) and 
(lc) imply (4a), do (la) and (4a) imply (lc)?. The (surprising?) answer is: ‘No-at least not 
always’. Subtracting (4a) from the divergence of (la) gives V-((du/at)  - v V2u) = 0 in R, which 
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is, - after commuting the operators, the transient heat equation for 0. Since 0 is initially zero in 
0, a la (3b), it will remain zero-thus satisfying (lc)-if and only if 0 (or d@/an) is held at 
zero on r. On the other hand, consider the following, ostensibly equivalent PPE: 

(4b) 

A similar analysis now leads to a(V.u)/at = 0 in R, regardless of the value of 0 on r. Integration 
in time then gives V - u  = g(x); i.e., V-u is independent of t. But (3b) states that V-u, = 0, and 
since V-u = g(x) for all t ,  we must have g(x) = 0. So we see that ( la)  and (4b) do imply (lc) for 
a well-posed problem, but that ( la)  and (4a) might need additional ‘help’ to imply (lc). 

We shall return to these somewhat subtle, delicate and important issues later. For now, we 
just make the following 

V2P = V.(v v 2 u  - u-Vu).  

Remarks: 

(i) We will soon address the issue of applying (4) at t = 0. 
(ii) If (3b) is not satisfied, (la) and (4b) imply that V Y I  = V-u, # 0; the initial divergence is 

preserved for all time. If, however, (4a) rather than (4b) is used to get P under these same 
conditions, the initial divergence will diffuse out to the boundaries $0 = 0 there, but will 
diffuse toward a constant value in 0 if M / a n  = 0 on r. (Ifneither 0 nor d@/an is held at zero 
on r, additional and unknown ‘divergence’ can be diffused into or  out of R.) Thus the 
Poisson equation approach can ostensibly solve an otherwise ill-posed problem-and has 
probably often although inadvertently done so. 

(iii) We have also just proven the following important facts (modulo pressure BCs, which come 
later and can have a profound effect on these ‘facts’): Any divergence-free velocity field 
induces a (computable) pressure field. This pressure field ensures a divergence-free 
acceleration, which is then also computable; i.e., the induced pressure assures that the 
velocity field remains divergence-free-at least up to the imposition of pressure BCs, which 
we discuss later. 

(iv) The pressure is thus seen to (also) play the role of a Lagrange multiplier acting to enforce 
satisfaction of the solenoidal constraint. 

(v) If the solution (u, P) is not sufficiently smooth, owing to some combination of rough data- 
u,(x), w(x, t )  and r- it is possible that the initial pressure field will not satisfy (4). In such 
cases, the pressure (and concomitant acceleration) can only be obtained by solving the 
coupled system of (1). This is a consequence of the fact that (la) and (lc) encompass a larger 
class of solutions than do (la) and (4). 

Focusing now on ‘sufficiently smooth’ 2D domains for simplicity, we assume that a Cartesian co- 
ordinate system with u = (u,., uy) = (u, u) will be utilized and that a local Cartesian system can be 
erected at each point on r such that the local normal to r coincides with one of its axes. (An 
ostensibly analogous analysis could then be applied to 3D domains of sufficient regularity.) 

Denoting by n the outward-pointing unit normal vector and by z the unit tangent vector on r 
according to Figure 1, we have the following identities on I-: 

and 
a a  a a 

u - v  = u-+ u-=un-+ u -, 
ax ay an ?aT 
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Figure 1. 

where of course derivatives with respect to n are ‘one-sided’. 
Now to complete the specification of the problem for the pressure, we must set BCs on r. Since (4) 

is a derived equation, it is not surprising that the concomitant BCs must also be derived. And the 
obvious way of doing so is simply to apply (la) on the boundary itself. But since (la) is a vector 
equation and a scalar BC is required, we seem to have a choice: either the normal or tangential 
projection of (la) onto r is ostensibly sufficient to supply a BC for (4). We first choose the former to 
get 

n.VP 5 aP/an  = v V2u, - ((&,/at) + u-VU,) on r for t 3 0,  (6)  
so that (4) and (6) provide a Neumann problem for the pressure; i.e., given a velocity field satisfying 
(1)-(3), the (induced) pressure field can be obtained from (4) and (6),  at least up to an arbitrary 
additive constant. 

Remarks 

(i) As with (4), we will soon address the use of (6) at t = 0. 
(ii) It is well known that a solvability constraint is associated with a Neumann problem. The 

solvability constraint associated with (4b) and (6), which is just a restatement of global mass 
conservation, is automatically satisfied when (1)-(3) are satisfied; i.e., when the original NS 
problem is well-posed, so is the associated Poisson/Neumann problem. The proof is simple: 
first restate the original problem as 

(au/at) + VP = v v 2 u  - U-vu 5 f 
and 

these imply 
V.(au/at)=O in Q; 

also 
V 2 P = V - f  in Q; 

aP/dn = n-( f  - (du/dt))  on r. 

Solvability then requires 

Jn V 2 P  = Jn V.f* 
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n-(f - (du/at)) = n.f + 
J r  

n n n 

0 = J n.(au/at) = n*w(x, t) = (d/dt) n-w(x,  t ) ,  
r Jr Jr 

which is satisfied since (2b) is true for all t 2 0. Q.E.D. 
(iii) We will show, in the Discussion section, that (4a) and (6)  is also well-posed. 

On the other hand, the tangential component of ( la) on r gives the so-called Dirichlet condition, 

2 . v ~  = ap/az = vzU, - ((aur/at) + u-vu,) ,  (7) 
where the value of P on 
along z. 

this, we first assume that (4a) applies on r to give, using (5 ) ,  

(i.e., Dirichlet data) is provided (in principle, at least) by integration of (7) 

Next we address the question: 'Does a solution of (4) and (6) satisfy (7)". To (partially) answer 

Next, differentiate (6) in the n direction, 

and insert the result into (8) to give 

a2p a au, a au, 
~ = --(U*VU,) - vv2- + --, 
a 2 2  az a n  a t  a n  (9) 

where a / h  has been commuted with V2 and a/&. Now use the continuity equation, (1 b), on r in the 
form (au,/an) + (au,/az) = 0 in (9) to give, commuting the operators again, 

~ = - -(U.VU,) + - ' V  v2u, - 2 
a2p a 
a z 2  az az a (  :) 

or 

- - + U'VU, + - - v VZU, = 0,  az a (aur a t  ap az ) 
which implies that the term in parentheses is independent of z (on r). But since the equation of 
motion (and its tangential component) must be satisfied in the neighbourhood of r (if not actually 
on I-), this term must vanish identically; i.e., we obtain (7): (4a) and (6)  do imply (7)-at least 
for sufficiently smooth solutions. [A similar 'proof follows easily beginning with (4b) and (6).]  

Hence, if the Neumann BC is applied to the pressure Poisson equation, the solution (if sufficiently 
smooth) will also satisfy the Dirichlet BC. This result can also be interpreted as another way of 
saying that both normal and tangential components of the momentum equation, (la), apply on (or 
at least very close to) the boundary. But, as shown by Heywood16 and Heywood and Rannacher," 
only the normal component of the momentum equation applies on r at t = 0 for the general case. 
They also show that the initial pressure field is obtained from the Poisson/Neumann problem: (4) 
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and (6) at t = 0; i.e., these equations apply for t 2 0, a result that coincides with (lc) but is not 
coincidental in the common sense of the word. Hence, as we will demonstrate and further discuss 
later, the tangential momentum equation on the boundary (and concomitant Dirichlet BC for 
the PPE) only applies for t > 0 in the general case. 

Thus, in general, the initial solution is not sufficiently smooth to validate the above argument; 
for t > 0, however, the solution is generally smooth enough. 

Remarks 

Just as (4) and (6) imply (7), it can be shown (in the same way) that (4) and (7) imply (6). 
For the simpler but more common case of u = 0 on r,(6) and (7) become dP/an = 
v a2u,/an2 and aP/dz = v d2u,/dn2 respectively. 
For Re >> 1 and u = 0 on r (for simplicity), (6) can ostensibly [but see (iv) below] be 
approximated by aP/an=O and (7) by aP/az=O; indeed, the first of these approxi- 
mations is frequently and successfully made in practice (e.g., in boundary layer theory). 
For the inviscid (Euler) equations (v = 0, Re = a), however, the results are different, owing 
to the loss of the no-slip BC: while (l), (6) and (7) still apply (with v = 0), (2) is changed 
to n*u = w(x, t )  on r and J r  w(x, t )  = 0; the tangential velocity on r is unconstrained. If, 
further, w = 0, (6) becomes aP/an = 0 (consistent with the above remark), but (7) becomes 
[using (5b)l 

au,/at = - ( (ap /az )  + (u,au,/az)) = - (a /a t ) (P  + &:), 

consistent with a streamline on r but not consistent with the high-Re approximation above. 
This is a manifestation of the singular limit as v-0 and provides a hint, at least, of the 
difficulty associated with large Re. It also helps to reinforce the assertion that the Neumann 
BC is inherently preferable and suggests, in complete harmony with boundary layer theory, 
that (in dimensionless form) 

a2uT/anZ = O(Re) for Re >> 1 (and t > O ) ,  

so that dP/az remains bounded. It also suggests that the Dirichlet BC would then be 
extremely difficult to approximate numerically, since a2u,/an2 is both large and rapidly 
varying. 
Finally, for Stokes flow (Re = 0), (4a) becomes V2P = 0 [i.e., u-Vu is omitted from (1) and 
thus from (4)] and the entire pressure field is thus ‘driven’ by the BCs [which are (6) or (7) 
with the (non-linear) advection term omitted]. Clearly the sometimes-used BC aP/an = 0 
on r is (usually) a very bad approximation to (6) for this limiting case, since it would yield 
P = constant, which is (usually) wrong. 
If the solution of (1)-(3) is smooth enough that (4) is valid, the (same) velocity and pressure 
fields will be obtained by solving (1)-(3) or (la), (2)-(4) and (6). [Provided (6) is used to 
compute the initial ( t  = 0)  pressure field, then BC (6) can be replaced by BC (7) for t > 0 and 
the results will still be the same.] 

After presenting some discrete equations and some numerical examples, we will return to the 
subject of Dirichlet BCs for pressure, but viewed from a different perspective. 

DISCRETE APPROXIMATIONS T O  THE CONTINUUM EQUATIONS 

We, like Chorin,17 S t r i k ~ e r d a ’ ~  and many others, advocate the ‘direct attack’ on the original 



1120 P. M. GRESHO AND R. L. SANI 

primitive variables form of the equations without the introduction of the continuum-derived 
Poisson equation; i.e., we work with (la) and (lc) rather than (la) and (4). The main reasons for this, 
which were also discussed by Gresho et a1.,18 are: 

(i) The Poisson equation approach, being higher-order in the spatial derivatives, induces the 
requirement of more-than-originally-necessary smoothness (differentiability) in both 
pressure and velocity. 

(ii) The BCs, which must also be (carefully) derived, are difficult to implement owing (at least) to 
the necessity of approximating second-order derivatives of velocity at the boundary. 

(iii) There is generally no discrete divergence-free condition that will be satisfied by the 
computed velocity field. 

(iv) The associated solvability constraint is often (usually) difficult to satisfy. This point, which is 
considered by Pat Roache (personal communication) to be of special importance, will be 
discussed further below. 

A final reason is the result to be demonstrated below; viz., 

(v) The primitive variable approach simultaneously removes the ambiguity regarding pressure 
BCs (there are none), yet automatically, implicitly, and perhaps ironically, leads to the 
‘proper’ choice; i.e., the analyst then need not and cannot make the choice. 

Retaining time as a continuous variable, the semi-discrete version of (1) and (2a) can be written as 
the following differential-algebraic system (Petzold and Lotstedt 19): 

MLi + A(u)u + GP = K u  + f ( t ) ,  (1 1 4  

where u is now a vector containing all internal nodal degrees offreedom associated with the velocity 
(u and u in 2D, or u, u and win 3D) and P is a vector containing the discrete pressures (all-internal 
and boundary). M is the ‘mass matrix’ which, when not diagonal (e.g., GFEM), couples the 
accelerations, and A(u) ,  K ,  G, and D are the matrices representing advection, diffusion, gradient, 
and divergence, respectively. Finally, the given vectors f and g represent the effects of the Dirichlet 
boundary conditions on velocity. (y is obtained by transposing all terms involving specified 
boundary velocities in the discretized continuity equations at or near r.) The initial conditions are 
u(0) = uo where Duo = g(0) = go is required in order to have a well-posed problem, u la (3b). 

To complete the specification of the semi-discrete problem, we must address the BC solvability 
constraint, the analogue of (2b). But since this issue is fraught with difficulty in the finite difference 
method (see, e.g., Briley,20 Ghia et a1.,21*22 AlfrinkZ3 and S t r ik~e rda ’~ ) ,  we take what for us is the 
easy way out, using the GFEM. In this case we have the important result that D = GT: the gradient 
and divergence matrices are the transposes of each other-and this result (see also S t r a ~ ~ g ~ ~ )  holds 
for all other BCs as well as Dirichlet. [Actually, here (1 1 b) represents the negative of the divergence- 
free constraint, - V - u  = 0; i.e., the convergence-free constraint.] Letting b = K u  + f ( t )  - A(u)u 
and replacing G by C to obtain notational consistency with our previously published works on NS 
(whence M -  ‘ C  is the gradient operator, or, more precisely, the weak gradient operator), we rewrite 
the differential-algebraic system as 

MLi + C P  = b(u, t ) ,  u(0) = uo ,  
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Remarks 

(i) 

(ii) 

(iii) 

We 
Since 

The actual weak divergence operator is M i  ’ CT, where M ,  is the pressure mass matrix; i.e., 
the Gram matrix associated with the pressure basis functions-see, e.g., Sani et aLZ5 or 
Engleman et aLZ6 
Denoting G, = M -  ‘C as the weak gradient operator, D ,  = M i  ’ C’ as the weak divergence 
operator and (u,u), = uTAu, we have the FEM analogue of the identity discussed by 
Chorin;” viz., (p ,  D , u ) ~ ,  = (u, G,p),  for all p and u; and the entire equation -0 = 0 as 
h-0, where h is the generic mesh size. 
Rewriting (12), after differentiating (12b) with respect to time, as 

[c“. :][;i]=[$]. 
which can be solved for u and P ,  emphasizes the (important) point that: ‘Given a divergence- 
free velocity field, the NS equations generate the corresponding pressure and (divergence- 
free) acceleration’. 

now consider the BC solvability constraint related to global mass conservation d la (2b). 
it is known (e.g., Sani et ~ 1 . ’ ~ )  that the C matrix possesses a non-trivial null space in the 

presence of Dirichlet BCs, comprising at least what is called the hydrostatic pressure mode, 
PA = (1 --f 1)= and CP, = 0, the system (12) has a solution if and only if g ( t )  is orthogonal to 
this null space; in particular, we have 

P&CTu = U T C P H  = 0 = P$g( t )  (13) 
as a constraint on the boundary data, g(t).  This is the proper analogue of (2b) and provides the 
important assurance that the applied BCs represent a global mass balance for the semi-discrete 
system. It is noteworthy that constraint (13) is ‘more important’ than its continuum counterpart, 
(2b), in that a numerical solution exists if and only if (13) is satisfied, a situation which often 
precludes the simple use of interpolations of continuum fields satisfying (2b) as initial conditions for 
the discrete problem. (See also Engelman et and G l o ~ i n s k i . ~ ~ )  There also sometimes exist 
‘spurious pressure modes’, d la Sani et al., which also induce their own associated (and spurious) 
solvability constraints, but we shall not delve further into this matter except to state that we 
henceforth assume that these constraints, too, are satisfied. Returning briefly now to ‘reason (iv)’ 
above, if we were to discretize (4) rather than (lb), (12b) would be replaced by r?P = k,  where k(u)  is 
known and r? corresponds to the Laplacian matrix with Neumann BCs and is thus singular. 
Since r?PH = 0 and r? is symmetric, the solvability condition then would be P;k = 0, which 
is not often satisfied if k is obtained in the seemingly appropriate manner-via a discretization 
of (4) and (6). Again, for further elucidation, see, e.g., Ghia et ~1.’’ and Alfrir~k.’~ Finally, to 
see the type of difficulty that can arise if D # GT when the primitive variables, (1 l), are employed, 
see S t r i k ~ e r d a . ’ ~  

Given that the constraints of (12b) and (13) are satisfied by the initial and boundary data, we 
have a well-posed differential-algebraic system and can proceed to derive the discrete analogue 
of (4), the pressure Poisson equation: since C’u = g( t )  for all time, we have C’u = j which is 
used in (12a) to obtain 

(14) (CTM - ’ C ) P  = CTM ’ b(u, t )  - 4, 
which we call the consistent discretized pressure Poisson equation {for reasons mentioned in 
Gresho et u ~ . , ~ O  the most important of which for our purposes here is that the discrete 
approximations to the pressure BCs are [still, as in (12)] built in-automatically}. 
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When employing (14) in practice (see Gresho et aL30), it is expedient to employ 'mass 
lumping' which converts M (and, more importantly, M - ' )  to a simple diagonal matrix. 
(In most finite difference methods, A4 is inherently diagonal.) 
The 'Laplacian' matrix, C T M - ' C ,  is singular; it annihilates P, as well as any spurious 
pressure modes. But, because (1 1)-( 13) are satisfied, the solvability constraint associated 
with (14) is automatically satisfied-i.e., as in the continuum, a well-posed system in 
the primitive equations will always generate a solvable Neumann problem: 

PT,CTM-'b - PLg = bTM- 'CPH - PLg = 0 .  

Also, since (by definition, see Sani et ~ 1 . ~ ' )  the C matrix annihilates all pressure modes, 
the pressure gradient is always meaningful-even in those cases where the pressure itself 
is not. [Here, though, it is noteworthy that, if g ( t ) = O  so that g=go,(14) is solvable 
for any value of go, well-posed or not; i.e., (13) needn't then be satisfied for (14) to possess 
a solution. The solution, however, will be devoid of physical meaning if (1 3) is violated. 
It will satisfy CTti = 0, as discussed below, but not CTu = g uniformly in time.] 
It may be important to note that the above Laplacian matrix is actually a 'generalized' 
Laplacian in the sense that it has access to the larger class of (less smooth) solutions 
referred to in Remark (v) below equation (4). 
In the term CTM- 'b (u , t )  is C T M - l K u ,  which approximates vV-(V2u) in R. Away from 
boundaries, this term is small but generally non-zero since the matrices don't commute. 
It is identically zero, however, on certain simple meshes (e.g., equal rectangles) and it 
always vanishes as h ' 0 ;  see also Gresho and Chan.31 At (or near) boundaries, however, 
this is the very (and non-zero) term that provides the (crucial!) viscous contribution to 
the (Neumann) BC given by (6); i.e., it no longer approximates vV.(V2u), just as 
( C T M - ' C ) P  no longer approximates V2P there. The omission of K u  on the right-hand 
side of (14), which would appear to mimic (4a) more closely, would actually lead to large 
errors in any viscous flow simulation as it would approximate the inuiscid BC; e.g., 
d P p n  = 0 from (6) with v = u, = 0-an especially bad BC for low Re; it would mimic 
(4a) but not (6). As a final curse on this idea, the resulting solution would violate 
(12b)-especially near boundaries. It thus seems reasonable to suggest that (4b) is a 
better starting point than (4a) for generating approximate solutions via the PPE 
approach. 
Interpolated initial discrete velocities derived from the continuum equations that satisfy 
(3) will not generally satisfy (13); yet it is the latter that is required for well-posedness 
of the discrete problem. (See Example 1 below.) 
Consistent PPEs have been utilized in several early and important finite difference 
papers: Harlow and Welch,32 C h ~ r i n ~ ~  and Williams.33 
It may be worth pointing out that many finite element codes but few finite difference 
(or finite volume) codes bypass the PPE route of (14) by solving the coupled system of 
(12) directly. The principal advantage of this approach is that the consistent mass matrix 
can easily be retained. The disadvantage is that the fully coupled system is more expensive 
to solve-implicit time integration is then virtually mandatory. 
Finally, similar again to the continuum, just as (12a) and (12b) imply (14), so too do 
(12a) and (14) imply (12b). [Either set of (differential-algebraic) equations can be used 
to generate the same approximate solutions to the NS equations.] 

Proof: Inserting (14) into (12a) gives (formally) 
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MB+ C(CTM-'C)-'[CTM-' b(u, t )  - g] = b(u, t )  

and thus 

CTti = CTM- %(u, t )  - (CTM- 'C)(CTM- 1c)- "CTM - 'b(u, t )  - g] = g , 

which integrates to CTu = g ( t )  + k,  where k is a constant vector. Since this result is true 
for all time, we have CTuo = go + k and thus CTu = g ( t )  + CTu0 - go. Finally, imposing 
the solvability condition from the original primitive equations, CTu0 = go, gives 
CTu = g ( t ) .  Q.E.D. 

[If the BCs are independent of time, g ( t ) = g o  and the general result from (12a) and 
(14) is CTB = 0 or CTu = CTu0 and, as stated above, CTu0 = go is ostensibly not required 
in order that a solution exist; but then any initial violation of mass conservation is 
carried on forevermore in time, again in complete analogy with the continuum-see 
Remark (ii) following (4).] 

Returning now to the main issue, we focus on the meaning of (14) on or near r, since the BCs for 
(4) are built in to the linear algebraic system (14) that approximates (4). We shall thus construct 
portions of the equations represented by (14); and we shall do so directly-i.e., by inserting the 
appropriate accelerations of (1 la) into the time-differentiated form of ( 1  1 b). The equations of 
interest are those wherein the discrete continuity equation involves velocities on r (i.e., those that 
are specified). We shall explicitly construct the relevant and typical equation at a simple but 
representative boundary given by x = L; other cases then follow easily. The demonstration will be 
performed for three different discretization schemes; two finite difference and one finite element. 
The chosen approach also allows us to avoid the issue of whether D = GT. 

We begin with the staggered mesh (MAC) scheme (e.g., Harlow and Welch,32 R ~ a c h e ~ ~ )  shown 
in Figure 2 and write the continuity equation ( l l b )  for the cell containing Po: 

B,-U, d,-zjs - +- - 0,  1 h 

where ti, (on r) is given and the three other accelerations must be obtained from the semi- 
discretized momentum equations, (1 la); viz., 

(i) Node w: 

A. 

Figure 2. MAC grid near the boundary x = L 
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where A(u)uw = (u(du/dx) + v(du/dy)), + O(1, h) or 0(12, h2) depending on whether advection 
is approximated via upwind or centred differencing respectively. We do not write the A(u)u 
terms in detail since all that matters here is that they represent a consistent approximation to u-Vu. 

(ii) Node n: 

where v,, is the value of v at a ‘phantom’ node, or fictitious node, outside of $2. It seems that 
in most ‘MAC-type’ references, u,, is eliminated by linear extrapolation from v, through the 
known value on r, Vr(,,), via v,, = 2vr(,) - v,. But since this appears to be a slightly inconsistent 
approximation to d2v/dx21n [it leads, via Taylor series, to (2vr(,, - 321, + vnW)/l2 = 
~(d2o/dx2)1, + O ( l ) ] ,  we will use the minimum higher-order extrapolation given by 
v,, = 4(80,(,, + v,, - 6v,), giving 4(2vr(,) - 3v, + cnw)/12 = d2v/dx2 I n  + O(1). For further discussion 
of this and related issues, see Peyret and Taylor.35 

(iii) Node s: In a similar way, we write, given vy(,), 

Inserting the above accelerations into (15) yields 

+ v,, v,, - 2v, + u, 
+ h2 - A ( U ) V , - -  h 

which we multiply by 1 and rearrange to 

A(u)v, - A(u)v, P, - 2 P o  + P, 
h2 +’[ h + 

>I . v, - 2v, + v,, v,, - 2v, + v, - +-( h h2 h2 

Taylor series expansion of all quantities about the point Po then yields (almost ‘by inspection’), 
as 1,h+O, 
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or 

dn 

which is just (6) applied at  x = L. 

continuity equation corresponding to Po, at node 0, is 
Next, consider the non-staggered mesh of Figure 3, in which each node carries a u, u and P.  The 

(17) 
1 1 
21 2h -(3& - 4ti, + ti,,) + - ( ~ n  - zj,) = 0 ,  

where the first term represents a second-order accurate approximation to &/ax at node 0, 
following C h ~ r i n . ' ~  Since uo, u, and u, are given by the boundary conditions, we need in this case 
only the u-momentum equations at nodes w and ww. 

(i) Node  w: 

u,, - 2u, + uo +--). u,, - 2u, + us, 
h2 

Po - pw, 
21 

6, + A(u)u, + 
(ii) Node ww. 

c,, + A (u)  u,, + P w w  - P w w w  = ( u w  - 2 u w w  + u w w w  unww - 2 u w w  + us,, 
12 

+ -  
21 l 2  

Inserting these accelerations into (1 7) yields 

Po - p,, + 4A(u)u, + 4-- u,,-2u,+u u,,-2u + u  3& - 4L2 ___- 0 +- _ - w s w  " 21 ( l 2  h ) 21 

1 
2h 

+ -(zj" - d,) = 0 

or, after multiplying by 2113 and rearranging, 

L 
Figure 3. Non-staggered grid near x = L 
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which clearly consistently approximates 

a p  l a  
ax 3 ay at 
- = v v2u - (; + u.vu) - --- 

to O(h, 1) at node 0 or, as h, 1-0, we again recover (6), applied at  x = L. 

Remarks 

(i) If we had used a first-order approximation to du/dx at node 0, viz., (u,  -uw)/21, the 
essential final result would be the same; i.e., the Neumann BC on r. 

(ii) If we modified (‘regularized’) the scheme a lu S t r i k ~ e r d a , ‘ ~  we would still recover the 
Neumann BC since his scheme is just an O(h2)  perturbation from the non-staggered scheme 
analysed above. 

Last, for a finite element derivation of the same final result (except that 1 = h), using bilinear 
approximation for u and u and piecewise constant aproximation for P (an FEM version of a 
staggered grid), see Gresho.6 (Note here that the pressure for this element. like that in the MAC 
finite difference scheme, belongs to the ‘generalized’ Laplacian referred to earlier, since the pressure 
is discontinuous from one element to the next.) 

These sample results, while certainly not representing a proof, are sufficiently suggestive to 
permit the assertion that any consistent discretized approximation of the primitive variables will 
‘automatically include’ (i.e., imply) a consistent pressure Poisson equation in R and the appropriate 
Neumann BCs on r. 

Finally, careful analysis of these discrete equations leads to a more succinct and perhaps better 
way to express all of the above results: given f, to find a and V P  from (i)a + VP = f and(ii)V-a = 0, it 
is sufficient to solve V 2 P  = V - f  in R and aP/dn = n-(f - a) on r, where the Neumann BC is also 
the realization of (ii) on r. This argument also makes clear the need to know n-a  on I‘ in order 
to have a completely-posed problem. 

NUMERICAL EXAMPLES 

Example 1 

This simple but powerful example was inspired by Heywood and Rannacher: Consider (1)-(3) 
with v = 1, w(t) = 0 and uo(x) with compact support; viz., uo(x) is only non-zero in a subdomain (R,) 
of R that does not include any portion of r. Figure 4 shows the (25 x 25) domain and the initial 
velocity field on a uniform 50 x 50 element mesh, which is given by the stream function 

$(x,Y) = C sin2 4 x  - xO)/ll [sin2 4 y  - y,)/hl, (19) 
where I x h is the inner 11 x 7 rectangle (R,) centred at (x,, yo) = (16.5,7.5). 
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2 4  1 

0 1 2  2 4  
Figure 4. An initial velocity field of compact support that is discretely divergence-free 

The initial velocity field is obtained from uo = d$/ay and uo = - a$/ax evaluated at each node 
point within R,, with uo, v o  = 0 in R - R,. While the continuous velocity field is solenoidal, the 
discrete interpolated one is not; i.e., if 6, represents the nodal interpolant, CT6, # go = 0 and 
the problem, as posed, is ill-posed. This is a minor issue, however, if one has the 'mass consistency 
adjustment mechanism', as described by Gresho et in his code; viz., C0 is projected onto 
the discretely divergence-free subspace by first solving for the Lagrange multiplier il from 

(C=M-'C)A = CT6, ( 2 W  

60 = 60 - M - ' C A ,  (20b) 

and then computing the mass consistent velocity field Go from 

which obviously satisfies CTGo = 0 and is thus a legitimate initial condition for (12); this is the vector 
field shown in Figure 4, in which Go = 0 outside of SZ,. The corresponding initial pressure field Po 
from (14) with t = 0, g = 0 and b(Go, t )  = KGo - A(Go)G, is shown in Figure 5. It is noteworthy 
that Po is independent of the viscosity for this case-both in the continuum and the discrete case. 

At this point we recall the possible BCs for the pressure Poisson equation, (4). For this case the 
Neumann BC, (6), gives aPo/dn = 0 and the Dirichlet BC, (7), gives dPo/dz = 0, and we see an 
obvious contradiction-while either BC is mathematically legitimate for the Poisson equation, 
the solutions from each would be very different. Clearly only the former is satisfied in Figure 5 and 
this is in complete agreement with Heywood and Rannacher; the 'overdetermined Neumann 
problem' is not satisfied at t = 0. And it is just this violation of aPo/dz = 0 that causes 'regularity 
problems'-the sdution is not as smooth as it would be if (7) were also satisfied at  t = 0-an 
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1 2  

0 

Figure 5. Initial pressure field corresponding to the velocity field of Figure 4. Note the 10-fold increase in contour interval 
for P < O  

apparent impossibility for the problem posed. It is also noteworthy that wall vorticity production 
is caused by (proportional to) dP/dz and the no-slip BC (see, e.g., P a n t ~ n ~ ~ ) .  For inviscid flow, 
although d P , / d ~  would be the same, there would be slip and no vorticity generation-as well as a 
more regular solution, since then we would have ?u,/?f = - (3P/?r on r at f = 0; the flow would 
accelerate along r instead of generating vorticity there. 

Consider, for example, the point at x = 20, y = E ,  where 0 < E < <  1; i.e., a point just in 
from the boundary. At t = 0, the x-momentum equation gives duo/& = - aP,/ax for the 
acceleration in the tangential direction. But at t = O f ,  the same equation reads &/at = 
- dP/dx + vV2u - u-VU, wherein the last term (advection) is a quadratic quantity and is 
negligibly small (i.e., we effectively have a developing Stokes flow at early time), as is a2u/ax2 
compared to d2u/ay2. Since u = 0 on r for all time and dP/ax  is finite (in R and on r) and 
(to first approximation) slowly varying both in space and time, the tangential acceleration and 
vd2u/ay2 must suffer a jump as t + O  and y+O. (The data do not satisfy the global compatibility 
conditions discussed by Heywood and Rannacher" and Temam.' ') Here too we have an example 
that would tend to vitiate Merino's'' interpretation of the behaviour as t+O,  since we indeed 
see no slip-and the tangential equation of motion is violated at the walls. 

For further elucidation of this important point, we show in Figure 6 the significant terms 
comprising the two pressure BCs (normal and tangential) at x = 20, y = 0 as a function of time for 
two uniform mehses: 50 x 50 = 2500 elements and 100 x 100 = 10000 elements. Realizing that on 
any given mesh in which some sort of boundary layer phenomenon is being simulated there is a 
time below which the numerical results are not worth much (the 'minimum time of believability' 
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0 = 50 X 50 mesh 
X = 100 X 100 mesh 

0.014 

" 0  0.05 0.10 0.15 0.20 

Time 

Figure 6 .  Test of the normal (aP/ay = va2u/C3y2) and tangential (aP /ax  = vaZu/dy2)  boundary conditions 

discussed by Gresho and Lee3' and G r e s h ~ , ~ ~  which time is O(Ay2/v),  or O(0.25) on 
the 50 x 50 and O(0.0625) on the 100 x 100 mesh for this problem, the numerical results 
are quite consistent with the theory: (1) the difference between aP/ay and va2u/dy2 is small, 
nearly independent of time, and is a measure of the spatial truncation error (it decreases by a 
factor of - 2.8 from the first to the second mesh); i.e., the Neumann BC is (closely) satisfied-for 
all time; (2) v a2u/ay2 is trying very hard (for t > 0) to equal aP/ax and is apparently only 
restricted from doing so by the diffusiooal time constant of the mesh and then by spatial 
truncation errors; i.e., the Dirichlet BC is (closely) satisfied for t > 0, but is clearly violated at t = 0. 

(To generate Figure 6, a four-point, second-order accurate finite difference formula, described 
in the next example, was used to estimate a2u/an2 and a2v/dn2 at the wall. To get aP/dn 
and aP/az, the presence of a checker-board pressure mode-see Sani et ~ l . ~ ~ - r e q u i r e d  first 
the strict use of M - ' C P  to remove this mode; after computing aP/ay and aP/ax in this way 
at the first two nodes up from the boundary at x = 20, simple second-order extrapolation was 
employed to estimate the gradient at  the wall.) 

Two other points are worthy of mention: (1) the simplest finite difference solution to 
au/& = va2u/dy2 - aP/ax, where aP/ax as a function of time is taken from Figure 6, 
gives almost the same curve for v d2u/dy2 at y = 0 as is labelled vuyy in Figure 6; (2)  the 
numerical results are also trying to satisfy au/at = ( - a ~ / a x )  erf [y /2J (v t ) ]  near y = 0 at 
small t ,  which is the time derivative of the analytic solution of this 1D 'heat' equation with 
aP/ax held constant at its initial value (see, e.g., pp. 78, 130 of Garslaw and Jaeger3'). This 
analytic solution, 

u = L (  -.*)[ ap 2 y 2 + d 2  erf(')+mexp( 6Y -$)-$I, V 
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where 6 = ,,/(4vt), exhibits a discontinuity in &/at and a2u/ay2 at y = 0, t = 0. This close 
approximation also suggests a more general and probably very important result: the tangential 
velocity component(s) near a no-slip wall and for small time will respond to the (parabolic) 1D heat 
equation in which the tangential pressure gradient plays the role of a heat source and is obtained 
from (i.e., is a consequence of) the initial ( t  = 0) Neumann problem for the pressure. 

Example 2 

Here we revisit the ubiquitous lid-driven cavity and examine some steady-state results for 
both Stokes flow and high-Re flows (5000 and 10000). The solutions (vectors and isobars in the 
upper right quadrant of the cavity) shown in Figures 7-9 on a 50 x 50 graded mesh of bilinear 
velocity/piecewise-constant pressure elements were obtained using the modified finite element 
technique [applied to (12)] described by Gresho et aL3' Figure 10 shows the tangential velocities 
at two locations near the solid boundaries for the two high-Re cases, u(x) versus x at y = 0.75 
and u(y)  versus y at x = 0.75, corresponding respectively to the points marked A and B in 
Figures 7-9. The points marked on these curves show that the boundary layer thickness follows 
fairly well the equation 6 = 4/,,/Re; i.e., the solution in the neighbourhood of these points is 
probably well-described by boundary layer theory. 

To test these results with respect to BC satisfaction, we estimated aP/an, aP/az, a2u,/dn2 and 
a2u,/an2 at points A abd B of Figures 7-9. Since the numerical solution for velocity and pressure is 
probably about second-order accurate, we use second-order approximations to the derivatives. To 

W f. ao 0 - 
X 

Figure 7. Vectors and isobars in the upper right quadrant of the lid-driven cavity; Re = 0. Contours shown are: 
3 x 10-3,3 x 10-3, io-2,3 10-2, to- '  
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Figure 9. Same as Figure 8 except Re = 10000 
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U 

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00 
X 

Figure 10. Tangential velocities near the walls for two Reynolds numbers. The full circles are placed at a distance 4/,/Re 
from the walls 

compute dP/dx at the wall, for example, we first compute M ;  C,P from the raw data (A4 is a 
lumped mass matrix), which converts element centroid pressures to nodal pressure gradients, at  the 
first two nodes in from the wall (which involves six elements). Then a linear extrapolation from 
these nodes to the wall is utilized to obtain d P p n  and dP/dz at the walls. For the velocity 
derivatives we used the following one-sided finite difference formula, 

a24/an2 = 2(211 + I2 + / 3 ) ( 4 2  - 40)/12z3(11 + I2) 

- 2(24 + 212 + /3)(41 - 40)/4b(I, + l 3 )  

- 2(211 + / 2 ) ( 4 3  - 4 0 ) / / 3 ( / 2  + /3)(l1 + + I31 9 

where node 0 is at the wall, node 1 is at I ,  (normal distance from the wall), node 2 is at ( I ,  + 12) and 
node 3 is at ( I ,  + I, + 13); and 4 is u or v. 

for Stokes flow simply to put 
the results on a similar scale to the other two cases (the pressure scales with v for Stokes flows). 

The results are shown in Table I, where we selected v = 
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Table I. Driven cavity test results ( v  = 0.001 for Re = 0, 
v = 1/Re for Re > 0) 

Re Neumann BC Dirichlet BC 

a2u, a p  a2u, a p  
an an2 aT an2 
- - V -  V -  

Right sidewall (x = 1, y = 0.75; point A) 
O -0.014 -0.016 0.036 0.035 

5000 -0.029 -0.025 0.27 0.23 
10000 -0.021 -0.016 0.27 025 

Top wall (x = 0.75, y = 1; point B) 
0 -0.0079 - 00078 0.023 0.027 

5000 -0.0073 -0.0086 0.32 0.27 
10000 -0.0036 -0.0036 0.30 0.25 

I 
I 
I 
lY 

A X 

I 
I 

1 
////// - " = '  

Figure 11. Geometry and computational domain (broken line) for Stokes flow about a stationary cylinder near a moving 
wall 

While it is apparent that both BCs are reasonably well-satisfied, we must admit that similar 
calculations at other wall locations (e.g., close to the singularity at x = y = 1 or close to one of 
the lower corners where all terms are quite small) were not so encouraging. On the other hand, 
the BCs on pressure were usually satisfied to about the same accuracy as were the momentum 
equations themselves (using all terms) away from the wall-again using difference quotients to 
approximate derivatives. 

Finally, Figures 7-9 show that, while aP/an=O on the walls is nearly true for the 
large-Re cases, except of course very close to the corner singularities (not shown), it is far from 
true for Stokes flow. 

Example 3 

The final example is steady Stokes flow (for v = 1) about a stationary cylinder located close 
to a moving wall, as illustrated in Figure 11. Both an exact solution and detailed numerical 
results generated via a primitive variable GFEM formulation are available (Maslanik et aL4'), 
the streamlines for which are shown in Figure 12. The exact and GFEM nodal velocities and 
elemental pressures for that portion of the mesh illustrated in Figure 13 are presented in Tables I1 
and 111. Using these results and the second-order accurate finite difference formulae discussed 
in the previous example, the relative error in the Neumann and Dirichlet boundary conditions 
at, for example, point A (node 26) in Figures 11 and 13 can be estimated, i.e., 
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Figure 12. Typical mesh and streamlines for flow around the cylinder of Figure 11 

Since both exact as well as GFEM results are available, these errors can be evaluated for both 
cases in order to also obtain some assessment of the truncation error of the difference scheme 
on this mesh. The errors from the GFEM solution are EN =0.07 and ED=0.25, and the 
corresponding errors for the exact values are EN = 0.003 and ED = 0.32. Again here the primitive 
variable GFEM method is trying to satisfy both the Neumann- and Dirichlet-type boundary 
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Table 11. FEM and exact nodal velocities for mesh of Figure 13 

Node X Y U U u e x  vex 

24 
25 
26 
27 
28 
81 
82 
83 
84 
85 

139 
140 
141 
196 
197 
198 

- 0.2480 
- 0'2495 
- 0.2500 
- 0.2497 
- 0'2487 
- 0.2769 
- 0.2783 
- 0.2788 
- 0.2785 
- 0.2776 
- 0.3084 
- 0'3088 
- 0.3085 
- 0.3397 
- 0.3401 
- 0.3398 

-0,03133 
-0.01570 

0.0 
0.0 1266 
0.02529 

-0.03442 - 
- 0.0 1 724 

0.0 
0.01 513 
0.03025 

0.0 
0.01765 

- 0.0204 1 
0.0 
0.0202 

- 0.01881 

0.0 
0.0 
0.0 
0.0 
0.0 

- 0.1746 x lo-' 
0.5995 x 
0.3716 x lo-'  
0.7007 x lo-' 
0.1072 x lo-' 
0.9588 x lo-'  
0.1388 x lo- '  
0.1916 x lo- '  
0.2472 x lo-'  
0.2898 x 10- 
0.3529 x lo-' 

0.0 -0.9027 x lo-' 
0.0 -0.4855 x 
0.0 0.0 
0.0 -0.1762 x 
0.0 - 0.9484 x 
0.5479 x lo- '  - 0.1492 x lo-' 
0,6005 x 10-l 0.8075 x 
0.6468 x lo-' 0.3884 x lo-' 
0.6826 x lo- '  0.7147 x lo-' 
0.7176 x lo- '  0.1091 x lo-' 
0.1052 0.1007 x lo - '  
0.1137 , 0.1432 x lo-' 
0.1209 0.1960 x lo-' 
0.1397 0.2543 x lo-' 
0.1514 0.2967 x lo-' 
0.1619 0.3593 x lo-' 

0.7146 x 
0.7717 x 
0.2665 x 

- 0.3474 x 
-0,4327 x 

05446 x lo-' 
05977 x 10-1 
0.6444 x 10- ' 
0.6818 x lo- '  
0.7176 x lo-' 
0.1047 
0.1 133 
0.1 206 
0.1392 
0.1509 
0.1614 

Table 111. FEM and exact elemental pressures for mesh 
of Figure 13 

Element xc Y C  P P e x  

24 
25 
26 
27 
80 
81 
82 
83 

137 
138 

- 02632 
- 0.2642 
- 0.2643 
- 0.2636 
- 0.2927 
- 0'2936 
- 0.2937 
- 0.293 1 
- 03242 
- 0.3243 

0.4753 
0.49 18 
0.5069 
03208 
0.4730 
0.49 10 
0.5082 
0.5246 
0.4902 
0.5095 

5.5793 
5.3080 
4.9761 
4.7662 
5.2518 
4.9494 
4.7359 
4.4599 
4.6777 
4.4181 

5.5759 
5.2645 
4.982 1 
4.7293 
5.205 1 
4.9425 
4.69 13 
4.4534 
4.6325 
4.408 7 

t :: 

t :: 

199 ..142 ..85 

..141 ..84 
198 @ Q  

::197@::140@ 1:83@ 

@ @ 82@ 

195 @ 81@ 

t :: 196 ..139 .. 
t $  ,138 

'I 'I 

= 0.01263 

= 0.01266 

= 0.01570 

= 0.01563 

L L L k 

P, = 0.0288 

P, = 0.0300 
Q3 = 0.0313 

Figure 13. Schematic of the finite element mesh (bilinear velocity. piecewise constant pressure) near point A of Figure 1 1  
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conditions (as does the analytic solution); moreover, this case is an example of one in which the 
sometimes-used homogeneous Neumann boundary condition would be inappropriate. 

DISCUSSION 

First we return to reconsider, amplify and re-emphasize an important point made earlier. 
The incompressible NS equations can be written as 

a +VP=f(u)  in 0, (214 

V.a=O in SZ,  (2 1 b) 

where a = au/at is the acceleration and f(u) = v V2u - u-VU. Given a (sufficiently smooth) 
solenoidal velocity field that satisfies the BC on the normal component (n.u=n.w), f(u) is 
known and (21) can be used to compute a and P. This can be done as follows: 

(i) Solve V2P = V.f(u) in 0, which can be used in lieu of (and is equivalent to) (21b) in the 
domain. 

(ii) Use aP/an = n-[f(u) - a] on r, which is the equivalent manifestation of (21a) and (21b) on 
the boundary. 

(iii) Set n-a = n.dw/dt = w,, [see (2a)l on r, which sets the value of the BC in (ii) and completes 
the specification of a well-posed problem for P; it is also another boundary realization of 
V-a = 0 and assures continuity in n-a as x + r. 

(iv) Compute a in 0 from (21a). If also e-u = t -w on r via (no-slip) BCs, which requires v > 0 and 
generally requires t > 0, then (21a) will also apply on r and yields a = w there. (At t = 0, it is 
not necessary to have t - u  = t - w  on from which it follows that the tangential acceleration, 
tea, is generally singular for x + and v > 0-although it is always true that n-a = n-w on 
r at t = 0.) 

(v) A simple (in principle!) time integration of a then gives the velocity field. 

Having now accomplished some of our major goals, it is also of interest to compare the correct 
approach to the PPE and BCs to others, some of which have been used with varying degrees 
of success to generate numerical algorithms. 

Given the ICs and BCs of (2) and (3), we consider a sequence of problems, defined below, each of 
which involves the selection of one PPE and one associated BC: 

A. Consistent PPE: 

V2P = V*(V v2u - USVU). (CPPE) 

B. Simplified PPE: 

V2P = - V ' ( U ' V U ) .  (SPPE) 

C. Consistent Neumann BC: 

aP/an = n*(v v2u - U-vu - au/at). (CNBC) 

D. Arbitrary Neumann BC: 

aP/an = N(x). (ANBC) 

E. Arbitrary Dirichlet BC: 

P = D(x). (ADBC) 
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We now examine the consequences of solving the CPPE or the SPPE with one of the above three 
BCs, along with the momentum equation (la), and discuss the nature of the resulting solutions 
(when they exist). To do so, we shall, in each case, perform two principal steps: 

Form an equation for V-u by subtracting the PPE from the divergence of (la); i.e., from (1) 
V ~ P  = vqv v2u - U-vu - au/at). 

(2) Apply the divergence theorem to the PPE and its BC; this will test for consistency and BC 
‘compatibility’ (to be defined below). 

The results from step (1) are easy to state: 

(i) The CPPE approach implies 

V-(au/at) = V-a = 0 in R; 
the acceleration remains divergence-free and thus so does the velocity. 

(ii) The SPPE approach implies 

vqaqat - v v2u) = o 

or, what is presumably equivalent, 

a(v-u)/at = v v 2 ( v - u ) ,  

a transient ‘heat’ equation for the divergence 0 = V-u. Here, while 0 starts at  zero, it will 
only assuredly remain zero if some (additional) mechanism exists for holding V-u (or its 
normal derivative) at zero in the boundary. For solutions which are at least Co, this is 
equivalent to enforcing n-u = n-w on r, as discussed earlier. Since no a priori ‘mechanism’ is 
obviously operative in general, it must be assumed that in such a case the velocity would 
wander away from the divergence-free subspace. We will return to this issue below. 

It is interesting and perhaps even paradoxical that the SPPE was generated by assuming V-u = 0 
yet its use cannot guarantee same. But if we do not assume V-u = 0 (in the viscous term), the 
CPPE is obtained and it assures that u remains divergence-free: If you include it, you don’t need it; if 
you don’t include it, you need it. Perhaps this paradox, which we shall resolve in due course, is 
related to some numerical methods of the past that behaved ‘strangely’. 

Now we move to the BCs and apply step (2) above to the six possible cases: 

(1) CPPE + CNBC. Application of the divergence theorem to CPPE, using CNBC, gives 
simply s,n-a = 0 as a solvability/consistency constraint. But, as noted earlier, 

which is zero because of (2b) and (3c). This is the ‘clean’ case. 
CPPE + ANBC. Here we obtain the constraint (2) 

which will not generally be satisfied; i.e., no solution exists for general N ( x ) .  For a special 
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and (too?) common case, however, a solution will exist; viz., if u = 0 on r and N is taken 
as zero (i.e., aP/an = 0 on r), the solvability condition is trivially satisfied-all terms 
are zero. (To show that the viscous term does indeed vanish, use 

[ r n * v 2 u =  [nv-(v2u)= [ o v - ~ v ( v * u ) - v  x v x u ]  

In this case, however, as discussed earlier, the solution will generally not be the desired 
one; i.e., it will not ‘smoothly’ satisfy (1)-(3) because the normal momentum equation 
does not want to see aP/an=O on r. Rather, it will lead to a BC ‘incompatibility’, 
discussed below. 
CPPE + ADBC. This case is especially subtle since a solution always exists (there is no 
solvability constraint), V*u remains zero in R and u = w on r, yet the solutions will 
generally not be ‘right’. The reason is simply that the acceleration a, and thus u, will be 
wrong near r because P, and thus VP, is. a will disagree with w both in magnitude 
and direction; i.e., the solution would actually tend to (try to) violate the imposed BC(u = w 
on r)---although it will not in fact do so. To see this, write the NS equations (again) as 
a = f(u) - VP, where V2P = V-f,  so that V - a  = 0 in R; but for a given f there is only one 
vector field, VP, that will give a + w as x -+ r. Since V P  is a function of D(x), there is 
clearly only one correct D(x). Thus, for arbitrary D(x), u will not smoothly approach w 
as x + r, leading to a loss of regularity at r. Perhaps the consequence of this behaviour 
is most easily seen if w = 0; here the solution (very) near r would generally tend to display 
‘spurious’ inflows and outflows-but since V-u = 0 in R, the net inflow ‘tendency’ will 
balance the net outflow ‘tendency’. (Note that V - u  = 0 in R + J, u - n  = 0, but not u - n  = 0 
on r; there are many ways to satisfy the global constraint, but only one, viz., u - n  = w - n  
on r, that will also give a continuous normal velocity field in a-and thus be correct.) 
We will refer to such behaviour as a ‘boundary condition incompatibility’. 
SPPE + CNBC.  The solvability condition here is 

(3) 

(4) Ir n.(v v2u - (au/at)) = o 

which is the compatible BC for the transient diffusion equation associated with the SPPE; 
i.e., this combination is solvable. Also, the CNBC provides just that ‘mechanism’ to ensure 
n * a - + n - w  as x +l-, so that 0 = 0 is the (implied) BC for the (implied) divergence ‘heat’ 
equation; i.e., VP is correct, 0 = 0 in fi and the correct solution is realized. 

Considering also case (l), this BC makes (4a) and (4b) equivalent, and thus (4a) and (6) are 
also well-posed. 
SPPE + ANBC.  As for the CPPE case, it is clear that no solution exists in general. Again as 
in that case, the special combination of dP/an = 0 and u = 0 on r will yield a solution-but 
here it will be exceptionally poor; it will generally not conserve mass (V-u # 0) and it will 
display the BC incompatibility. 
SPPE + ADBC. In this last case, we obtain another bad result in general: while the solution 
will always exist, it will generally violate V - u  = 0 and be incompatible at the boundary. As in 
case (3), however, there is a special D(x) which gives the right answer. Before pursuing this 
important point, we present in Table IV a summary of the six cases considered thus far. 

It is interesting and relevant to study further the case CPPE + ADBC and (especially) the last 

( 5 )  

(6) 
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Table IV. Behaviour of various ‘pressure schemes’ 

Satisfies Violates 
Solves the v * u  = 0 v - u  = 0 No 

NS equations and but displays and displays solution 
Scheme BCs, (1)-(3) BC incompatibility BC incompatibility exists 

CPPE + CNBC 0 
CPPE + ANBC .+ .* 
CPPE + ADBC 0% 

SPPE + CNBC 
SPPE + ANBC 
SPPE + ADBC 

.+ .* 

.i 

Notes: 
*The general case. 
+ Special cases (e.g., aP/an = 0, u = o on r). 
t If the Dirichlet data are appropriate (and special, particular, as discussed below) rather than arbitrary, then the BC 
incompatibility vanishes and (1)-(3) are satisfied. 

case, SPPE + ADBC, for reasons that will soon become clear. Consider the Poisson/Dirichlet 
problem 

V 2 P = S  in Q, P = D  on r, (22) 
and the related Green’s function problem 

V 2 G = - d ( x - Q  in R, G = O  on r .  (23) 

If G(x; 5)  were known, which we assume to be the case, the solution to (22) could be obtained by 
integration; viz., 

and the pressure gradient is the vector field 

Inserting, e.g., S = - V*(u*Vu) for the SPPE into (25) and (25) into the linear momentum equation, 
(1 a), produces an aceleration field 

a = vV2u - u.Vu - Vg.(u*V,u)V,G(x;5)dR, + (26) 

But, as mentioned earlier, this acceleration will not agree with dw/dt on r in general and the 
solution would therefore display discontinuities at XE and, if the SPPE were used, become non- 
divergence-free as well. If, however, D(x)  were special, rather than arbitrary, the correct solution 
could be obtained. So we will now use (26) to determine the proper boundary pressure, D(x), by 
setting n-a  = n*dw/dt = w, on r to smoothly enforce mass conservation on and near the boundary: 
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(27) 

which is a boundary integral equation for Pr = D(5);  i.e., the right-hand side of (27) is known, as 
is G(x;(), so (27) yields P-at least in principle. 

Another and simpler approach to the consistent Dirichlet boundary condition (CDBC) begins 
with the following (generalized/modified) Green’s function problem: 

+ lQVr*(u-VCu)-G(x;QdR, a for xET, 
an, 

v%= - ~ ( x - Q + K  in R, a G / a n = o  in r ,  (28) 
where the addition of the constant K ,  with K - ’  = JndR, is required in order to have a well- 
posed problem. Again assuming that g(x; 5 )  is available, the pressure is (more) easily obtained 
from 

for x, C E ~ ,  where the arbitrary constant has been set via J, P(x) dt2 = 0 and N ( 5 )  is the consistent 
Neumann data for aP/an, obtained from (6). In particular, the boundary pressure is obtained by 
restricting x to xET and performing a simple quadrature rather than solving a boundary integral 
equation. Thus, to determine Pr,  it is actually only necessary to know g(x; 5 )  for xET, even though 
we need 5 ~ f i .  

The resulting boundary pressure, from (24) or (29) applied on T, is the unique (up to an additive 
constant) pressure that simultaneously removes the BC incompatibility (there is no more jump in 
the normal velocity) and assures that V-u remains zero in fi; i.e., for the SPPE, this Dirichlet BC on 
pressure (the CDBC) provides just that ‘mechanism’ required to prevent 0 from being generated 
on I‘ and diffusing into R. Zfthis BC is employed, it is clear that (4a) and (4b) are again equivalent- 
as for the CNBC. 

Since (29) looks somewhat more ‘attractive’ than (27) for computing Pr,  it may be interesting to at  
least speculate upon the construction of an approximation to g. To do this, let 

G(x; 5) = F(x; 5 )  + Y(x; 5 )  7 (30) 
where F(x; 5 )  is a ‘fundamental solution’ to Laplace’s equation-i.e., a ‘free space’ Green’s function 
(see, e.g., Greenberg,4’ Stakgold4’)-and Y(x; 6) is the regular part of 6 in R. Thus, since F satisfies 
V2F = - 6(x - 5 )  in R and is known, the Y-problem is 

V2Y (x; 5 )  = K in R, (314 

where, since 6, F and Y are symmetric in x and 5, we need only solve (31) for g E r ,  although x ~ f i .  
Thus, on a discrete mesh, (3 1) need be solved once for each boundary ‘pressure node’ (and only once 
per NS problem) in order that (29) can be used to compute P, at these same nodes at  any t 3 0. 

Having shown how to relate the Neumann data for the PPE to Dirichlet data, we remark that 
ideas similar to these are sometimes used when discrete time integration is invoked in which at least 
some semi-implicitness is employed-most typically in the viscous terms. These methods also are 
typically applied to the SPPE rather than the CPPE and are exemplified in, e.g., in Glowinski and 
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P i r ~ n n e a u ~ ~  (see also T h o m a ~ s e t ~ ~  and G l ~ w i n s k i ~ ~ ) ,  Kleiser and S ~ h u m a n n , ~ ~  Marcus,46 
le Quere and de Roquefort4' and Quartapelle and Nap~ l i t ano .~ '  While the first three and the last 
employ finite elements to generate a numerical algorithm, the other three use spectral methods. 
One difference in our derivation/interpretation is the identification of u - n  = w - n  on r as the 
boundary realization of V - u  = 0. [See Gresho and Chan3' and Bullisters2 for an alternate approach 
to semi-implicit time integration.] 

Upon comparing the above references to, e.g., Harlow and Welch32 or Gresho et al.,30 it is 
noteworthy that explicit time integration is much more amenable to the 'uncoupling' of equations 
(P then u) that is one of the reputed advantages of replacing V . u  = 0 by the PPE. That is, only 
when the velocity field is known, both in R and on r, can the right-hand side of the PPE and 
the BCs be easily and explicitly formed and the appropriate pressure thus directly computed. 
And this advantage would also accrue with higher-order explicit methods, such as the Adams- 
Bashforth or Runge-Kutta families. The flip-side of this observation, however, is the well-known 
stability limits of explicit techniques. 

To conclude, we observe that the efforts in this paper and in many before it have evolved to 
the following 

Equivalence theorem of incompressible pow: 

Given uo(x) in fi = R 0 and w(x, t )  on r with V-u, = 0 in R , u o - n  = w(x,O)-n on r, and 
j ,n*w(x,  t )  = 0, then there exists a velocity u(x, t) with u(x, 0) = uo(x) in R and u(x, t) = w(x, t) 
on for t > 0 and a pressure P(x, t)  that satisfy the following nearly equivalent systems: 

and 
(1) a u / a t + v P = v v 2 u - u - v u  in fi for t > O  

V . U = O  in iz for t > O ,  

(2) a u / a t + v P = v v 2 U - u U ' v U  in iz for t > o  
with in addition 

n.(au/at + VP - v v 2 u  + U - V U )  = o on r at t = o 
and 

V 2 P =  -V.(u*Vu) in R for t 3 0 .  

Remarks 

(i) They are only 'nearly' equivalent because system (1) can actually admit a larger class of 
solutions owing to the additional smoothness requirements implied by system (2). 

(ii) The initial pressure is completely determined by the (initial) Neumann problem and 
the fact that the tangential components of the momentum equation are generally not 
satisfied at t = 0 is caused by the no-slip (vorticity-producing) BC ( v  > 0) and leads to a loss 
of regularity as t + 0. (For example, the tangential acceleration near a no-slip wall may 
suffer a jump at t = 0 and the short-term behaviour of the tangential velocity will often 
closely obey the transient heat equation with a source term.) For inviscid flow (v = 0), 
the (slippery) solution is more regular at t =0-because the BC on u is relaxed to 
u - n  = w - n  on r. 

(iii) If V-u, # 0, system (2) can still have a solution. The solution will have V - u  = V-u, for all 
time and is not a solution of system (1) which is ill-posed and has none. 

(iv) A well-posed modified problem can, however, be easily derived from an arbitrary field, $x) 
in fi. as follows: 
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(a) Solve V2A = V-ii in 52 with a y a n  = n*(ii - w) on r. 
(b)  Set u, = ii - Vl. in a. 
(c )  Use uo(x) as the initial velocity for the Navier-Stokes equations. 

The modified field, u,(x), is the appropriate projection of ii(x) onto the solenoidal subspace, 
and is therefore divergence-free in a; i.e., it also satisfies n-u, = w - n  on r. It is also the 
‘closest’ divergence-free field to ii in a least-squares sense; it possesses the same vorticity as 
ii(x), but it generally does not satisfy z-u,  = z - w  on r. See also Chorin and M a r ~ d e n ~ ~  and 
Gresho et al.jo 

(v) The ‘theorem’ is actually only an assertion. Unfortunately, we must leave it to others to 
elevate it to a theorem. 

Towards the end of this research, we obtained a draft manuscript by S. Orszag, M. Israeli 
and M. Deville, entitled ‘Boundary conditions for incompressible flows’; it has since recently 
appeared in J. Sci. Cornput., 1,75. It appears to be complementary to our own, since it emphasizes 
discrete-time, continuous-space methods. Another contemporary paper with similar goals is that 
by A. Ku and T. Taylor, entitled ‘Pseudospectral methods for solution of the incompressible 
Navier-Stokes equations’, submitted to Cornput. Fluids. Finally, a recent interesting pair of 
papers by P i ronnea~~’ .~ ’  addresses the subject of pressure boundary conditions of a more 
general type. 

SUMMARY AND CONCLUSIONS 

The condition V - u  = 0 in fi for t 2 0 is very powerful and pervasive; it profoundly affects all aspects 
of incompressible flows, from theoretical understanding through algorithm design and numerical 
simulation. The appropriate realization of this incompressibility condition on is u * n  = wen for all 
t 2 0. 

The pressure in incompressible flows is always in equilibrium with a given (solenoidal) and 
generally time-varying velocity field, a fact that has caused much confusion; i.e., a divergence-free 
velocity field induces a pressure field, which pressure field is special (Lagrange multiplier) in that it 
ensures that the resulting acceleration field is divergence-free and thus that the velocity remains 
divergence-free. Proper BCs are essential in order to find this ‘special’ pressure if the PPE is utilized. 

The Neurnann BC (normal momentum equation on r) is always appropriate for the PPE. It is 
another manifestation of V - u  = 0 on I-, just as the PPE ensures V - u  = 0 in R. It is also ‘stable’ in the 
sense that it is valid for all Re, 0 < Re < 00 (and for v = 0), and all t 3 0. This result is related to the 
fact that aP/an = n - f  is the natural BC for the (scalar) Poisson equation, V z P  = V-f ,  that is derived 
from the (vector) equation, V P  = f, where of course f is curl-free. For the NS equations, simply 
replace f by f - a  and enforce V . a = O  in 0; it then follows that i t  is necessary to specify 
n.a on I‘ to determine P and that the normal velocity BC, a - n  = new, is appropriate (necessary 
and sufficient). When u-n is specified on r, the boundary realization of the continuity equation 
is simply the normal component of the momentum equation. 

The appropriate and associated Dirichlet BC for the PPE is that derived from the Green’s 
function for the Poisson/Dirichlet or Poisson/Neumann problem. This BC is equivalent to the 
above Neumann BC. It is also equivalent to the Dirichlet BC derived by applying the tangential 
momentum equation on the boundary, but only for t > 0 since the latter does generally not 
apply at t = 0. Any scheme that purports to invoke a Dirichlet BC for the pressure will only be 
correct if the resulting pressure also satisfies the proper Neumann BC. 

For r -0 and x + r, the tangential velocity will often (e.g., if u = 0 on r and v > 0) be 
well-described by the transient heat equation in which the tangential component of the pressure 
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gradient, ‘supplied’ by the Neumann problem, acts like a prescribed ‘heat source’ term-and 
generates vorticity along no-slip walls. 

We have tried to clarify some of the issues involved with Dirichlet boundary data for velocity for 
both the continuum equations (PDEs) and the semi-discrete equations. For this simple but 
important case, the results presented herein should help to provide a proper basis and starting 
point for all ensuing numerical approximation methods-in time and/or space-finite difference, 
finite element, spectral, etc. In the future, we hope to extend this work in some obvious (and some 
not so obvious) directions, For example, we and others often have difficulty with flow-through 
domains and many have gotten into trouble when numerical time integration is attempted. Free 
surface flows are yet another area of interest. 
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